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ABSTRACT Various loads induced by marine environmental conditions, such as waves, currents, and wind, are crucial for the 

operation and viability of offshore wind power (OWP) systems. In particular, waves have a significant impact on the stress and fatigue 

load of offshore structures, and highly reliable design parameters should be derived through extreme value analysis (EVA) techniques. 

In this study, extreme wave analyses were conducted with various Weibull distribution models to determine the reliable design 

parameters of an OWP system suitable for the Ulsan area. Forty-three years of long-term hindcast data generated by a numerical wave 

model were adopted as the analyses data, and the least-squares method was used to estimate the parameters of the distribution function 

for EVA. The inverse first-order reliability method was employed as the EVA technique. The obtained results were compared among 

themselves under the assumption that the marginal probability distributions were 2p, 3p, and exponentiated Weibull distributions.
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Nomenclature

R
2

: coefficient of determination

fHs(hs) : probability density function 

FHs(hs) : cumulative distribution function

K : shape parameter

C : scale parameter

γ : location parameter

γEW : extra shape parameter

fHsTp(hs, tp) : joint probability distribution

fHs(hs) : marginal probability distribution of Hs

fTp | Hs(tp | hs) : conditional probability distribution 

Hs : significant wave height

Tp : peak period

μ : mean 

σ
2

: variance

P : exceedance probability

LSM : least squares Method 

Subscript

OWP : offshore wind power

EVA : extreme value analysis

CAPEX : capital expenditure

OWPG : offshore wind power generation

LIDAR : light detection and ranging

ECMWF: european centre for medium-range weather 

forecast

KIOST : korea institute of ocean science and technology
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KHOA : Korea Hydrographic and Oceanographic Agency

MOF : Ministry of Oceans and Fisheries

KMA : korea meteorological administration

GOF : goodness-of-fit

I-FORM : inverse first order reliability method

MAE : mean absolute of error

CRMS : centered root mean squared error

RMSE : root-mean-squared-error

PDF : probability density function

CDF : cumulative distribution function

EC : environmental contour

2p : two - parameter

3p : three - parameter

EC : Environmental contour 

1. Introduction

With the recent acceleration of global warming 

caused by carbon emissions, various such as sea-level 

rise, extreme droughts, ecosystem destruction, and 

reduced crop production have become serious concerns. 

In response, various industries are focusing their 

efforts on reducing carbon emissions. The energy 

sector, traditionally reliant on sources like coal, oil, 

and nuclear power, is transitioning rapidly towards 

renewable energy. Wind power generation, with its 

high technological maturity and economic feasibility, 

is gaining attention as an effective option for reducing 

carbon emissions.
[1]

Compared to land-based wind power generation, 

OWPG offers numerous advantages, including excellent 

wind resources and energy generation, ease in developing 

large-scale wind farms, landscape preservation, and 

reduced noise. Consequently, a global expansion of 

OWPG technology is underway.
[2]
 South Korea is also 

gradually transitioning from land-based wind farms 

to offshore wind farms. Initiatives include the con-

struction of a 30 MW fixed offshore wind turbine off 

the northwest coast of Jeju in September 2017 and 

the completion of a 60 MW offshore wind turbine 

testbed in the southwest sea in January 2020. 

In the ongoing project for Korea’s offshore wind farm 

construction, Jeonnam is advancing an 8.2 GW fixed 

offshore wind project by 2030. Meanwhile, in Ulsan, 

multiple global turbine companies and developers are 

collaborating on a plan to construct a 6 GW floating 

offshore wind farm off the east coast of Korea.
[3]

The construction of wind farms involves several 

steps, including analyzing marine environmental con-

ditions, predicting the wind power generation capacity, 

selecting a wind turbine class, and determining design 

conditions for the wind farm layout and turbine system. 

Floating offshore wind turbines, unlike fixed ones, 

require consideration of various external load conditions 

such as waves, currents, and wind, as they directly 

impact the turbine system and floating structure’s 

operation and viability. Thus, the collection and 

analysis of data related to marine environmental 

conditions are integral components in the construction 

of offshore wind farms.

Marine environment data, including information on 

wind, marine conditions, climate, and seabed conditions 

required for the design of a floating offshore wind 

turbine system, should be analyzed in accordance 

with international standards such as IEC61400-3, 

DNV RP, and ABS.
[4]

Marine environment data can be collected as meteo-

rological data from offshore meteorological towers 

and floating LiDAR equipment. Moreover, to estimate 

the extreme value of marine conditions with a high 

reliability using statistical analysis methods, an amount 

of data corresponding to 1/4 of the return period 

must be available.
[5]
 However, it is almost impossible 

to maintain a high recovery rate while monitoring 

long-term data under extreme marine environment 
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Fig. 1. A procedure for analyzing external environmental 

conditions

conditions. Accordingly, in recent years, many resear-

chers have used numerical methods to obtain long- 

term data such as hindcast.

Sheridan et al. (2020) conducted a comparative 

validation between data collected by two floating 

LiDAR off the coasts of California, New Jersey, and 

Virginia and five sets of reanalysis data (MERRA-2, 

CFSv2, NARR, and RAP) to demonstrate that the ERA5 

and RAP models were the most reliable with the 

lowest wind speed deviation and highest correlation 

at near surface and hub heights 50-100 m level.
[6~13]

Sharmar and Markina (2020) used WAVE WATCH 

III, a numerical wave model, and various reanalysis 

wind field models (ERA5, ERA-Interim, NCERP CFSR, 

and MERRA-2) to validate the reliability of hindcast 

data. The study compared data collected from offshore 

buoys and hindcast data generated by various wind 

field models based on statistical error indices (i.e., 

normalized bias, scatter index, and root mean square 

error) and reported that the data generated by ERA5- 

Wave WATCH III were most similar to actual measured 

values.
[14]

Jeong et al. (2016) generated hindcast data in Korean 

Seas using the SWAN numerical wave model through 

applying the ECMWF wind field data and conducted 

a comparative analysis study that compared these 

data to annual average and peak Hs observation data 

of the corresponding areas. In that study, Hs time 

series data were in relatively close agreement and 

demonstrated a high correlation, but the peak value 

of hindcast data in high wave areas tended to be 

under-predicted.
[15]

To enhance the quality of hindcast data, it is 

important to select and apply the wind field model 

based on whether the objective of the study is a global 

or regional climate assessment. If it is the latter, a 

prediction model that can model the climate of the 

region at high resolution should be used. Recently 

the KIOST also generated hindcast data suitable for 

Korean waters using the SWAN numerical wave model 

and high-resolution WRF wind field model, and Jeong 

et al. (2016) and Eum et al. (2020) conducted validation 

studies on numerical hindcast data model for analyzing 

marine environment conditions.
[15,16]

 The reliability 

of the generated hindcast data was validated through 

a comparison and review against observational data 

from offshore buoys operated by the KHOA, MOF and 

KMA; a hindcast database for all Korean sea areas 

was established based on this approach.

As shown in Fig. 1, the procedures for analyzing 

external environmental conditions consist of data 

collection and validation, distribution function model 

selection, estimation of the parameters of the applicable 

model, and an analysis of environmental conditions. 

Up to present, most researchers have used the Weibull 

distribution, which has characteristics similar to an 

energy distribution with a low frequency of extreme 
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values and high frequency of low values, when 

analyzing the marine environment. Weibull distribu-

tions can be divided into 2p, 3p, and exponentiated 

Weibull distributions according to the composition 

of parameters, and recently, Pobočíková et al. (2023) 

compared the characteristics of these distributions 

based on wind data from the Poprad region in Slovakia. 

The wind data were compared by months and seasons 

using six types of GOF testing methods, and the study 

results indicated that the exponentiated Weibull 

distribution was most similar to the collected wind 

data as it provided relatively high flexibility.
[17]

The Gumbel function and I-FORM are widely used 

as the main methods for estimating extreme values. 

The Gumbel function is used to estimate the extreme 

value of a single variable, whereas I-FORM is used to 

estimate the extreme value of two or more combined 

variables. More specifically, with I-FORM, marine 

conditions with combinations of various external 

conditions acting on them can be combined to be 

expressed as a limit state. Accordingly, international 

standards such as IEC61400-3 Annex G, DNVGL- 

RP-C205, and NORSOK actively recommend the use 

of I-FORM in OWP turbine system design. The Gumbel 

function and I-FORM have the same purpose of use 

for extreme value estimation. However, as shown in 

Fig. 1, I-FORM differs in that it considers two or 

more variables to represent a critical limit state and 

design point.

Recently, Park et al. (2020) used wind, wave, and 

current data collected from the Barents Sea hindcast 

data to estimate the parameters of 2p and 3p Weibull 

distributions, which were then used to perform EVA 

using I-FORM. EVA using the parameters of the 2p 

Weibull distribution showed values similar to the 

collected data, but that of the 3p Weibull distribution 

showed overestimated results.
[18]

An existing study by Pobočíková et al. (2023) 

reported that the exponentiated Weibull distribution 

was the most suitable model under normal wind 

conditions, but the study did not perform an additional 

analysis under extreme wind conditions. Moreover, 

the extreme condition analysis study by Park et al. 

(2020) presented analysis results that evaluated only 

the 2p and 3p Weibull distributions, and not the 

exponentiated Weibull distribution. 

In the present study, marine environment data from 

the Ulsan sea area in Korea were used to calculate 

return period values necessary for designing floating 

OWP systems. The data collected from a marine mete-

orological buoy comprised short-term data spanning 

six years. However, due to insufficient quantity, these 

data were not suitable for use in EVA. Therefore, 

long-term hindcast data were employed instead and 

validity of the data was confirmed by comparing 

hindcast data with measured data from buoys. The 

parameters of the Weibull distribution were estimated 

using LSM, and checked for reliability by comparison 

with the CDF of the measured data. To derive a method 

suitable for extreme condition analysis in the Ulsan 

sea area of South Korea, this study additionally 

included the exponentiated Weibull distribution, which 

was not previously considered in the study conducted 

by Park et al. (2020).

This study proposes the most appropriate Weibull 

distribution model for extreme value analysis. This 

is demonstrated by comparing the error rates between 

the maximum value observed in the hindcast data and 

the estimated extreme values. Through this compre-

hensive procedure, we provide the extreme values of 

Hs and Tp that are essential for the accurate design 

of an offshore wind system in the waters off Ulsan, 

Korea.
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Table 2. Marine environment monitoring condition of hindcast 
data

Site coordinate 35°19′58.78″N, 129°40′1.17″E

Period 1/1/1979 – 12/31/2021

Time interval 1hour

Monitoring period 1/1/2016 – 12/31/2021

Measurement time interval 1hour

Items

Wind speed at 10 m height 

Wind direction at 10 m height

Significant wave height

Wave direction

Peak-period

Fig. 2. Locations of observation buoy and hindcast data

2. Marine environment data

2.1 Collection of marine environment 
observation data

Marine environment observation data were acquired 

over a six years period (January 1, 2016 to December 

31, 2021) using a marine meteorological buoy operated 

by KMA. The marine meteorological buoy is located 

at 35°20′43.00″N, 129°50′29.00″E, approximately 43 

km off the coast of Daesong-ri, Ulsan. This location 

is suitable for acquiring marine environment data 

because there is no interference from nearby topo-

graphy, landmarks, and reefs. Detailed information 

about the site coordinate, instrument, data recovery 

rate, monitoring period, measurement time interval, 

and observed items is provided in Table 1. 

Table 1. Marine environment buoy monitoring conditions

Site coordinate 35°20′43.00″N, 129°50′29.00″E

Instrument Buoy

Data recovery rate

Wind speed

- 92.71% (48773/52608)

Significant wave height

- 95.17% (50069/52608)

Period 1/1/2016 - 12/31/2021

Time interval 1hour

Items

Wind speed at 10 m height

Wind direction at 10 m height

Significant wave height

Wave direction

2.2 Marine environment hindcast data 
collection

KIOST has generated hindcast data using a WRF wind 

field and SWAN numerical wave model that includes 

wind-induced wave generation, wave dissipation, 

three-wave nonlinear interactions, and four-wave 

nonlinear interactions. In the present study, data 

from hindcast database developed by KIOST were 

used for comparison and validation against the buoy 

observation data. The location had coordinates of 

35°19′58.78″N, 129°40′1.17″E, which is approximately 

15 km from the buoy. Detailed information is given 

in Table 2 and Fig. 2.

2.3 Data Validation

The wind speed and Hs observation data collected 

by the marine meteorological buoy between 2016 and 

2021 and hindcast data for the same period were 

compared and analyzed to test the validity of the 

data. The characteristics of the hindcast data were 

reviewed using a time series validation and the hourly 

and daily R
2
 and error metrics were calculated to 

quantitatively analyze the accuracy between the model 

estimated values and observed values. Typical error 

metrics include bias, MAE, CRMS, and RMSE, which 

can be defined by Eq.(1)-(4) as follows:
[19]
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Fig. 3. Time series of hindcast data wind speed and buoy- 
observed wind speed

Fig. 4. Coefficients of determination (R
2
) of wind speed

Table 3. Error metric result of wind speed

Item
Wind speed

(1hour)
Wind speed

(1day)

Bias 0.45 m/s

MAE 1.39 m/s 0.89 m/s

CRMSE 1.76 m/s 1.07 m/s

RMSE 1.82 m/s 1.16 m/s

Bias 
N


Σi  

N Vmod  (1)

MAE 
N


i  

N Vmod  (2)

CRMSE N

Σi  

N  Vmodi 
Vmod Vobsi 

Vobs 

 

(3)

RMSE 


N


Σi  

N Vmodi Vobsi
  (4)

where, N is the number of data points; Vmod and 

Vobs represent estimates from the hindcast data and 

buoy-observed values, respectively, and Vmod and 
Vobs 

represent the mean value of each data. Bias indicates 

the mean deviation between the model estimate and 

observed value, MAE indicates the mean of all absolute 

errors of the estimates and observed values, RMSE 

indicates the mean root square of estimation error, 

and CRMSE indicates the difference in variation of 

the estimate and observed value based on the center 

of the error.

2.3.1 Validation of hindcast data characteristics

Fig. 3 shows the time series data for daily average 

wind speed of buoy-observed data and hindcast data 

collected at the same times between 2016 and 2021.

The results for the time series comparison of daily 
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Fig. 5. Time series of hindcast data Hs and buoy-observed Hs

Table 4. Error metric result of wind speed

Item
Hs

(1hour)
Hs

(1day)

Bias -0.04 m/s

MAE 0.212 m/s 0.161 m/s

CRMSE 0.296 m/s 0.217 m/s

RMSE 0.298 m/s 0.221 m/s

Fig. 6. Coefficients of determination (R
2
) of significant wave 

height

hindcast and observed data showed generally high 

similarity. However, the hindcast data values tended 

to show localized under- or over-estimation in some 

intervals, as compared to the observed values. To 

perform a more precise assessment of data reliability, 

hourly and daily wind speed data were quantitatively 

analyzed, and the results are shown in Table 3. The 

results of 1day average data show a relatively lower 

error rate as compared to 1hour raw data. These 

results were the product of errors, with the large 

local variability being offset as 1hour raw data were 

averaged. Fig. 4 shows the R
2
 of the 1hour raw wind 

data and 1day average wind data. The probability of 

data occurrence over 15 m/s high wind speed intervals 

was relatively low, but the hindcast data values tended 

to be over-estimated relative to the observed values.

Fig. 5 shows the time series data for 1day average 

Hs from the observed and hindcast data collected 

during the same period between 2016 and 2021. Overall, 

the similarity of Hs data was high. In significant wave 

height under 3 m, the hindcast data values tended to 

be under-estimated during the entire observation 

period, except 2020. Table 4 shows the quantitative 

analysis results.

Fig. 6 shows the R
2
 of 1hour Hs raw data and 1day 

Hs average data. These values demonstrated a similarity 

higher reliability as compared to the wind speed data.
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3. Statistical analysis methods

Probability distributions and parameters selected 

for statistical analysis may have a significant impact 

on the reliability of analysis of marine environment 

conditions. Energy sources such as waves, currents, 

and wind exhibit frequency distributions that closely 

resemble the Weibull distribution. Therefore, the Weibull 

distribution is widely used in the marine field to analyze 

environmental conditions. Moreover, because OWP and 

offshore structures exhibit external environmental 

characteristics that combine two or more variables 

(i.e., wind speed-turbulence intensity, wave height- 

wave period, and so on), estimating extreme values 

using I-FORM is recommended. For example, the wave 

height found at a specific wave period may be higher 

than the wave height found under the longest wave 

period condition; in such a case, the wave load 

generated at that wave period could have an even 

greater impact on the response of the structure.

3.1 Weibull distributions (2p, 3p, and 
exponentiated)

The most used 2p Weibull distribution can be ex-

pressed as a PDF; fHs
hs and a CDF; FHs

hs, as shown 

in Eq.(5) and (6) below:
[20]

fHs
hs

c

k c
hs 

k

･exp



 c

hs 
k


 (5)

FHs
hs exp




 c

hs 
k


 (6)

Where, hs is the significant wave height, k is the 

shape parameter, and c is the scale parameter. In 

the 3p Weibull distribution, the location parameter  

is added, and the distribution can be expressed by Eq. 

(7) and (8). In the exponentiated Weibull distribution, 

the extra shape parameter EW is added and the 

distribution can be expressed by Eq.(9) and (10).

rHs
hs

c

k c

hs  
k

･exp



 c

hs  
k


 (7)

FHs
hs exp




 c

hs  
k


 (8)

rHs
hs
c

Ewk c
hs 

k

･exp



 c

hs 
k



･

exp



 c

hs 
k




EW  

 (9)

FHs
hs exp




 c

hs 
k




EW

 (10)

The k is a factor that determines the shape of the 

curve, with a small k value indicating an evenly 

distributed energy source and increasing k values 

showing a narrow curve width and increase in the 

inflection point. The value of the c tends to increase 

with a higher average energy source. In addition, 

parameters  and EW added in the 3p or exponen-

tiated Weibull distribution help control the shape of 

the tails of Weibull distribution. These parameters are 

used to produce and determine the Weibull distribution 

models suitable for specific environmental conditions.

LSM was used to estimate the Weibull distribution 

parameters. By taking the log of both sides of Eq. (6), 

known as the Weibull CDF, the equation was arranged 

as a first-order expression as shown in Eq. (11).

lnln




FHs

hs
 


 klnhs klnc (11)

Where, lnln




FHs

hs
 


 represents the dependent 

variable y, whereas k represents the slope of inde-

pendent variable x, lnhs represents the independent 

variable x, and klnc represents the y-intercept. The 

parameter values were calculated by first-order 
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Fig. 7. U-space of 100year return period

regression analysis on the first-order equation. For 

3p and exponentiated Weibull distributions, parameters 

with a R
2
 value closest to 1 were selected as  and 

EW.

3.2 Extreme value analysis of inverse first 
order reliability method

I-FORM, first proposed by Winterstein is an EC 

method that effectively approximates the limit state 

of a given return period.
[21]

 This method is used in 

various fields, including offshore structure design, 

natural disaster prediction, and environmental risk 

analysis. Eq. (12) shows the joint probability distri-

bution of Hs and the peak period, which can be 

expressed as the product of marginal probability 

distribution of Hs and conditional probability distri-

bution of corresponding peak period, respectively. 

fHsTp
hs tp fHs

hs fTpHs
tp hs (12)

Where, fHs
hs is the marginal probability distri-

bution of Hs, fTpHs
tp hs is the conditional probability 

distribution, HS is the significant wave height, and 

Tp is the peak period. Generally, fHs
hs, the marginal 

probability distribution of Hs (assumed to be a Weibull 

distribution), can be defined by Eq. (13), whereas 

fTpHs
tp hs, the conditional probability distribution 

of the peak period (assumed to be a log-normal 

distribution), can be defined by Eq. (14).

fHs
hs

c

k c
hs 

k

exp



 c

hs 
k


 (13)

fTpHs
tp hs
tp



exp









 lntp 


  (14)

Where, k, c, , and  represent the shape para-

meter, scale parameter, mean, and variance, res-

pectively, and when a 3p or exponentiated Weibull 

distribution is used on the marginal probability 

distribution, parameter  or EW is added. 

Eq. (15) and (16) define parameters  and  of the 

conditional probability distribution used in a log- 

normal distribution; these are determined by Elntp   

and VAR lntp   corresponding to each interval of Hs. 

Parameters a1, a2, a3, b1, b2, and b3 are estimated 

by a non-linear fitting method.
[22]

  a a･hs

a (15)

  b b･exp hs･b   (16)

I-FORM, based on the conventional structural reli-

ability approach, is a method for determining the 

exceedance probability according to the return period 

and corresponding response level. All variables are 

independent and follow a Gaussian distribution. The 

order by which I-FORM is used to derive the contour 

line is as follows.
[23]

[Step 1] The exceedance probability (P) of a given 

return period can be derived by Eq. (17).

PX  x Fx   (17)

[Step 2] The probability of condition PX  x  can be 

derived by Eq. (18), whereas Eq. (19), re-

presenting an inversed Gaussian cumulative 
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distribution, can be applied to derive the 

radius of U-space () with mean of 0 and 

standard deviation of 1, as shown in Fig. 7.

PX  x Fx   (18)

  x  F p  (19)

[Step 3] Parameters of Weibull (k, c) and log-normal 

distributions (a1, a2, a3, b1, b2, b3) are 

estimated using Eq. (11), (15), and (16).

[Step 4] Eq. (20) and (21), transformation formulas 

proposed by Rosenblatt, can be used to 

transform U-space into a physical parameter 

space, the target response level, is found 

as the highest value on the surface in the 

physical parameter space.
[24]

F exp



 c

hs 
k


 (20)

F















ln 


 (21)

hs can be defined by Eq. (22)-(24) depending on 

the parameters that comprise the Weibull distribution, 

whereas Tp corresponding to hs can be defined by Eq. 

(25).

hspWeibull  cln F 
k



 (22)

hspWeibull  cln F 
k



 (23)

hsExponentiated  c




ln F

EW

 


k


 (24)

tp  exp ･    (25)

 and  of the conditional probability distribution 

can be derived by Eq. (15) and (16).

The methods for extracting data used in I-FORM 

can be divided into the global approach, which uses 

all data measured over a long period, and the event 

approach, which extracts only data that exceed a 

certain.
[25]

 The hindcast data used in the present study 

represent 43years of data, and because there was 

sufficient data, the global approach was chosen. 

4. Extreme wave condition analysis of 

East Sea of Korea

Floating OWP systems that are exposed to various 

external environmental conditions require a system 

optimization design that incorporates the site cha-

racteristics, including wind, waves, and currents. 

Wave conditions can prominently cause stress and 

fatigue load on the floating structure and act as a 

key factor that determines the dynamic response and 

motion performance of the structure. Accordingly, 

international standards, such as DNV-GL and ABS, 

recommend that the I-FORM statistical approach 

should be used for designing offshore structures to 

incorporate the extreme values of Hs for a return 

period of 100years and corresponding Tp in the design. 

An estimation of incorrect extreme value can cause 

the under- or over-design of an offshore structure, 

which can have a negative impact on its structural 

integrity and economic feasibility. Accordingly, to 

assure the reliability of extreme value estimation, a 

series of extreme wave analyses was conducted with 

various Weibull distribution models applied to I-FORM.

Fig. 8 shows the results from estimating the 

parameters of 2p, 3p, and exponentiated Weibull 

distributions using LSM. The exponentiated Weibull 

distribution and hindcast data were in close accordance. 
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Fig. 8. Coefficients of determination of significant wave height 
for Weibull distribution parameters

Table 5. Parameters for Weibull distribution

Parameter 2p 3p Exp

K 1.459 1.105 0.654

C 1.487 0.926 0.168

 or 
EW - 0.234 14.216

Fig. 9. CDF of hindcast data and each Weibull distribution

Table 6. Estimation of conditional probability distribution 
parameters

a1 a2 a3 b1 b2 b3

0.03 1.62 0.175 0 0.059 0.485

The parameter results are shown in Table 5.

The CDF were compared to verify the estimated 

values of the parameters. The results of which are 

shown in Fig. 9. The exponentiated Weibull CDF closely 

resembled hindcast data at all intervals, whereas the 

3p Weibull distribution showed similar results in some 

intervals between Hs greater than or equal to 1m and 

less than or equal to 1.5 m. In contrast, the 2p Weibull 

distribution showed over-estimations in intervals 

between Hs greater than or equal to 0 m and less 

than or equal to 0.5 m and under-estimations in 

intervals of Hs greater than 0.5 m, with slight 

differences in all intervals.

The conditional probability distribution applied in 

I-FORM was determined by E  lntp   and VAR  lntp   

of Tp corresponding to Hs. The distribution of Hs 

typically demonstrated high frequency and narrow 

scatter in low-wave intervals, and thus, it was 

important to reproduce the distribution characteristics 

by setting the bin spacing to be small. Accordingly, 

the bin of Hs was set to 0.25 m, and the E  lntp   and 

VAR  lntp   of Tp corresponding to this value were 

calculated. Parameters a1, a2, a3, b1, b2, and b3 were 

derived by non-linear fitting using Eq. (15) and (16), 

the results of which are shown in Table 6 and Fig. 10.

The error rates of peak Hs of hindcast data and 

estimated extreme values were calculated to validate 

the reliability of the I-FORM EVA results. Relative 

to the peak Hs value of hindcast data, EVA results 

larger than that value were expressed as “+” and 

results smaller than that value were expressed as 

“-,” as shown in Table 7. 

The results from I-FORM EVA using the parameters 
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Fig. 10. Estimation of conditional probability distribution 
parameters

Table 7. Comparison of extreme values (I-form vs hindcast 
data)

Parameter
Extreme value Error rate [%]

Hs [m] Tp [s] Hs [m] Tp [s]

hindcast 10.7 11.58 -

2p 8.56 10.88 -20.00 -6.04

3p 9.56 11.4 -10.65 -1.55

Exp 11.15 12.17 +4.21 +5.09

Fig. 11. Comparison on probability of exceedance (Log sacle)

of the exponentiated Weibull distribution overestimated 

Tp. However, the error rates of Hs and Tp were 

within 5%, showing a higher accuracy than the 2p 

and 3p Weibull distributions. The results from I- 

FORM EVA using the parameters of the 2p and 3p 

Weibull distributions underestimated Hs and Tp as 

compared to hindcast data, whereas Hs showed a 

large error rate of at least 10%. 

Fig. 11 represents the results of each probability 

of exceedance on a log scale, demonstrates the the 

exponentiated Weibull distribution has the best agree-

ment with the hindcast, indicating the highest reliability 

in the I-FORM estimation results. Based on such 

findings, the exponentiated Weibull distribution was 

confirmed to most accurately reproduce the extreme 

value distribution characteristics of waves and is 

identified as the most suitable model for EVA.

Fig. 12 shows the contour of 1, 10, 20, 43, 50, and 

100years by combining the parameters of 2p, 3p, and 

exponentiated Weibull distributions. Table 8 shows 

the extreme values by return period derived by the 

I-FORM contour. Relative to the extreme values 

obtained by applying exponentiated Weibull distribution, 

the extreme value of Hs for a return period of 100 

years was 12.09 m/s, and the corresponding Tp was 

12.61s.

5. Conclusion

This study confirmed the high similarity between 

the hindcast data and measured data, demonstrating 

that hindcast data is an effective alternative to 

collecting long-term measured data. In particular, the 

estimation of extreme value using the exponentiated 

Weibull distribution showed an error rate of less 

than 5%, exhibiting the highest accuracy in the Ulsan 

seas of South Korea. Future research aims to improve 

the reliability of extreme value estimation by combining 
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Fig. 12. Environmental contours for significant wave height and peak period

Table 8. Return value for waves (Tp, Hs)

year

2p 3p Exp

Tp
[s]

Hs
[m]

Tp
[s]

Hs
[m]

Tp
[s]

Hs
[m]

1 9.4 6.75 10.05 7.05 10.19 7.29

10 10.51 7.88 10.90 8.60 11.41 9.59

20 10.69 8.20 11.14 9.06 11.77 10.32

43 10.88 8.56 11.40 9.56 12.17 11.15

50 10.91 8.62 11.45 9.66 12.25 11.32

100 11.08 8.94 11.67 10.11 12.61 12.09

multiple EC methods and parameter estimation tech-

niques.

Acknowledgment

This work was supported by by the Ministry of 

Trade, Industry and Energy, (MOTIE) and the Korea 

Energy Technology Evaluation and Planning (KETEP) 

[Grant Number: 20228520020020].



Wave Analysis Method for Offshore Wind Power Design Suitable for Ulsan Area

2024. 6 Vol.20, No.2 15

References

[1] Olabi, A.G., Obaideen, K., Abdelkareem, M.A., AlMallahi, 

M.N., Shehata, N., Alami, A.H., Mdallal, A., Hassan, 

A.A.M., and Sayed, E.T., 2023, “Wind energy contribution 

to the sustainable development goals: Case study on 

London array”, Sustainability., 15(5), 4641. 

[2] Barooni, M., Ashuri, T., Velioglu Sogut, D., Wood, S., 

and Ghaderpour Taleghani, S., 2023, “Floating offshore 

wind turbines: Current status and future prospects”, 

Energies, 16(1), 2. 

[3] AEGIR., PONDERA., and COWI., 2021, “Accelerating 

South Korean offshore wind through partnerships: A 

Scenario-based study of supply chain, levelized cost of 

energy and employment effects”, https://www.rvo.nl/ 

sites/default/files/2021/06/Accelerating%20Offshore%

20Wind%20South%20Korea%20May%202021.pdf.

[4] Ko, D.H., Jeong, S.T., Cho, H., and Kang, K.S., 2014, 

“Extreme offshore wind estimation using typhoon 

simulation”, J. Korean Soc. Coast. Ocean Eng., 26(1), 

16-24. 

[5] Isobsen, I., 2005, “Petroleum and natural gas industries- 

Specific requirements for offshore structure-Part 1: 

Metocean Design and Operating Conditions”, British 

Standard Institute, 19901-19901.

[6] Sheridan, L.M., Krishnamurthy, R., Gorton, A.M., Shaw, 

W.J., and Newsom, R.K., 2020, “Validation of reanalysis- 

based offshore wind resource characterization using 

lidar buoy observations”, Web. mar technol soc j., 54, 

44-61. 

[7] Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., 

Molod, A., Takacs, L., Randles, C.A., Darmenov, A., 

Bosilovich, M.G., and Reichle, R., et al., 2017, “The 

modern-era retrospective analysis for research and 

applications, version 2 (MERRA-2)”, J. Clim., 30, 

5419-5454.

[8] Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., 

Tripp, P., Behringer, D., Hou, Y.T., Chuang, H.Y., and 

Iredell, M., et al., 2011, “The NCEP climate forecast 

system version 2 (CFSv2) 6-hourly products”, Research 

Data Archive at the National Center for Atmospheric 

Research, Computational and Information Systems 

Laboratory, 10, Dp. D61C1TXF.

[9] Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., 

Tripp, P., Behringer, D., Hou, Y.T., Chuang, H.Y., and 

Iredell, M., et al., 2014, “The NCEP climate forecast 

system version 2”, J. Clim., 27(6), 2185-2208. 

[10] Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., 

Shafran, P.C., Ebisuzaki, W., Jović, D., Woollen, J., 

Rogers, E., and Berbery, E.H., et al., 2006, “North 

American regional reanalysis (NARR)”, Bull. Amer. 

Meteor. Soc., 87, 343-360. 

[11] Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., 

Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., 

Radu, R., and Schepers, D., et al., 2020, “The ERA5 

global reanalysis”, Quart. J. Royal Meteorol. Soc., 

146(730), 1999-2049. 

[12] Benjamin, S.G., Weygandt, S.S., Brown, J.M., Hu, M., 

Alexander, C.R., Smirnova, T.G., Olson, J.B., James, 

E.P., Dowell, D.C., and Grell, G.A., et al., 2016, “A 

North American hourly assimilation and model forecast 

cycle: The rapid refresh”, Mon. Weather Rev., 144(4), 

1669-1694. 

[13] Sheridan, L.M., Krishnamurthy, R., García Medina, G., 

Gaudet, B.J., Gustafson, W.I., Mahon, A.M., Shaw, 

W.J., Newsom, R.K., Pekour, M., and Yang, Z., 2022, 

“Offshore reanalysis wind speed assessment across the 

wind turbine rotor layer off the United States Pacific 

coast”, Wind Energ. Sci., 7(5), 2059-2084.

[14] Sharmar, V., and Markina, M., 2020, “Validation of 

global wind wave hindcasts using ERA5, MERRA2, 

ERA-Interim and CFSRv2 reanalyzes”, IOP Conf. Ser.: 

Earth Environ. Sci., 606, 012056. 

[15] Jeong, W., Oh, S., and Eum, H.S., 2016, “Analysis of 

wave climate around Korea based on long-term hindcast 

and coastal observation data”, J. Coast. Res. Spec., 

75(sp1), 735-739. 

[16] Eum, H.-S., Jeong, W.-M., Chang, Y.S., Oh, S.-H., and 

Park, J.-J., 2020, “Wave energy in Korean Seas from 

12-year wave hindcasting”, J. Mar. Sci. Eng., 8(3), 161. 

[17] Pobočíková, I., Michalková, M., Sedliačková, Z., and 

Jurášová, D., 2023, “Modelling the wind speed using 

exponentiated Weibull distribution: Case study of Poprad- 

Tatry, Slovakia”, Appl. Sci., 13(6), 4031.



Woobeom HanㆍKanghee LeeㆍSeungjae Lee

16  신･재생에너지

[18] Park, S.B., Shin, S.Y., Shin, D.G., Jung, K.H., Choi, 

Y.H., Lee, J., and Lee, S.J., 2020, “Extreme value 

analysis of metocean data for Barents Sea”, J. Ocean 

Eng. Technol., 34(1), 26-36. 

[19] Draxl, C., Hodge, B.M., Clifton, A., and McCaa, J., 

2015, “ Overview and meteorological validation of the 

wind integration national dataset toolkit. technical report”, 

National Renewable Energy Laboratory, https://doi.org/ 

10.2172/1214985.

[20] Mathew, S., 2006, “Wind energy: fundamentals, resource 

analysis and economics”, Springer, 68-78.

[21] Winterstein, S.R. Ude, T.C., Cornell, C.A., Bjerager, 

P., and Haver, S., 1993, “Environmental parameters for 

extreme response: Inverse form with omission factors”, 

Proc. ICOSSAR-93, Innsbruck, Austria, 551-557.

[22] Morken, M.H., 2014, “A comparison of various appro-

aches for predicting extreme wave induced response for 

design of offshore structures”, M.S. thesis, University 

of Stavanger, Norway.

[23] Harver, S., and Winterstein, S.R., 2008, “Environmental 

contour lines: A method for estimating long-term extreme 

by a short-term analysis”, Trans. Soc. J. Nav. Archit. 

Mar. Eng., 116, 116-127.

[24] Rosenblatt, M., 1952, “Remarks on a multivariate 

transformation”, Ann. Math. Statist., 23(3), 470-472. 

[25] Bitner-Gregersen, E.M., 2015, “Joint met-ocean description 

for design and operations of marine structures”, Appl. 

Ocean Res., 51, 279-292. 


	Wave Analysis Method for Offshore Wind Power Design Suitable for Suitable for Ulsan Area
	ABSTRACT
	1. Introduction
	2. Marine environment data
	3. Statistical analysis methods
	4. Extreme wave condition analysis of East Sea of Korea
	5. Conclusion
	Acknowledgment
	References


